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We report large-scale quantum mechanical calculations for the HCCN radical in its ground electronic state.
A six-dimensional potential energy surface based on MR-ACPF/cc-pVQZ ab initio energy points is developed
and adjusted to reproduce experimental findings forν5

1 and ν1 of HCCN. Rovibrational energy levels of
HCCN and DCCN are computed for total rotational angular momentumJ ) 0-4 by making use of combined
(functional+ point wise) coordinate representations together with contraction schemes resulting from several
diagonalization/truncation steps. The classical barrier to linearity is determined to be 287 cm-1. Spectroscopic
parameters are calculated for low lying states and compared with available experimental data. Energy patterns
attributed to theν4 bending mode and to the quasilinearν5 bending mode are identified. It has been also
found thatν2 andν3 + (ν4

1,ν5
1)0,0 are coupled in HCCN, while the mixing betweenν3 and (2ν4

0, 2ν5
0)0,0 is seen

in DCCN.

1. Introduction

Cyanocarbene, HCCN, has been subjected to extensive
experimental1-14 and theoretical analysis15-22 in the last 40
years. The ground electronic state of the radical was found to
have triplet multiplicity.1-4 In the early work on HCCN, great
effort was put into answering the question whether the radical
is linear or bent.1-,5,15-19 A low barrier to linearity was first
estimated by theoretical means.15-17 From a detailed microwave
study of isotopically substituted HCCN, Brown et al. deduced
in 1990 an unusually short CH bond length, what led to the
conclusion that HCCN may possess a quasilinear structure.5 The
ν5 fundamental transition was observed at 128.907968(40) cm-1

for HCCN11 and at 2243.72708(21) GHz (74.843 cm-1) for
DCCN13 by means of the far-infrared laser magnetic resonance
technique. Malmquist et al.18 and Koput21 determined one-
dimensional optimum energy profiles along the HCC angle and
employed them in conjunction with the semirigid bender
approach.23 However, this model was found to be insufficient
for quantitatively describing the nuclear motion in HCCN.18,21

We refer to refs 11 and 21 for an overview of the previous
experimental and theoretical studies on HCCN.

In the present paper, we have undertaken a detailed full-
dimensional quantum mechanical study of HCCN and DCCN
in the ground electronic state. The motivation for this work is
provided by the recent high-resolution spectra6-13 of HCCN and
DCCN, which have established the frequencies of theν5(HCC)
bending andν1(HC) stretching vibrations to high accuracy. The

purpose of our study is to construct a potential energy surface
and to compute rovibrational energy levels. Another aim is to
study the quasilinearν5 mode under realistic conditions of the
vibrating-rotating molecule and to clarify characteristic energy
patterns. Our numerical results for H/DCCN are of interest for
studies on tetratomic molecules involving a hydrogen atom
attached to a nearly linear chain of heavy atoms, such as, e.g.,
HCNO, HNCO, and HNCS.

In section 2, we address the potential energy surface (PES)
constructed in the present work. The computational method used
to obtain rovibrational energies forJ ) 0-4 is briefly explained
in section 3. Our results for HCCN and DCCN are discussed
in section 4. Section 5 contains our concluding remarks.

2. Potential Energy Surface

A. Construction of the PES.The six-dimensional potential
energy surface for the ground (3A′′) electronic state of HCCN
was scanned by the multireference averaged coupled-pair-
functional (MR-ACPF) method,24-27 using the correlation
consistent valence quadruple-ú (cc-pVQZ) basis set. The
Complete Active Space SCF (CASSCF) method was employed
to optimize the orbitals. All calculations were performed with
the MOLPRO suite of programs.28 The nuclear coordinate space
was parametrized in terms of the bond-distance-bond-angle
coordinatesr1, r2, r3, R, â, andτ, shown in Figure 1a. Here,
r1 ) r(H-C), r2 ) r(C-C), andr3 ) r(C-N). The two in-
plane bending angles,∠HCC and∠CCN, are denoted respec-
tively by R and â, whereasτ stands for the dihedral angle
measured from the cis side. The PES was calculated for the
region specified by 1.4a0 < r1 < 4.1a0, 1.9a0 < r2 < 4.6a0,
1.7a0 < r3 < 4.3a0, 80° e R e 180°, 110° e â e 180°, and
0° e τ e 180°. In total, 1311 ab initio points were computed.
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The calculated potential energies were in the range from
-131.21429Eh to -130.98376Eh.

The ab initio points were fitted to the six-dimensional
analytical expression

wherecR ) cosR, câ ) cosâ, andl, m g n. For the stretching
part, we use a polynomial expansion in the modified Morse
coordinatesxi (i ) 1, 2, 3)

recommended by Meyer et al.29 The angular part ofV is given
by a multipole-like expansion, involving associated Legendre
functionsPl

n(cR), Pm
n (câ) and Chebyshev polynomials cos(nτ),

as suggested previously.30 The functional form of eq 1 is
invariant under the spatial inversion (τ f 2π - τ) and
independent from the torsion angleτ for linear arrangements
R,â ) 0,π.

The analytical expansion of eq 1 has six nonlinear parameters,
ri

ref and ai, which define the Morse coordinatesxi of eq 2. In
the preliminary stages of the fitting, we employed a nonlinear
least-squares technique to obtain optimum values for bothri

ref

and ai. In the final fitting, ri
ref and ai were held constant. For

given ri
ref andai, the expansion parametersCijklmn were deter-

mined by means of a linear least-squares procedure.
Several sets of{i, j, k, l, m, n} were tested in our fitting of

eq 1 to the ab initio points. The complete quintic expansion,
augmented by the one-dimensional radial contributions up to
the seventh degree and by the three-dimensional angular part
of the sixth degree, was found to be sufficient for achieving a
reasonable balance between the number of fitting parameters,
number of input ab initio points, and associated standard
deviationσ. The chosen ansatz of{i, j, k, l, m, n} defines in
total 336 fitting parametersCijklmn. This number of parameters
was reduced by an extensive search for all significantly
determinable parameters. Eliminating stepwise all parameters
smaller than twice their standard deviation and most of the
parameters smaller than three times their standard deviation,
we arrived at a functional six-dimensional expansion consisting
of 125 terms.

For the final fitting, we set a standard deviation of aith date
point of energyEi to beEi + 2000 cm-1, as previously done,
e.g., by Meyer et al.29 The standard deviation of the weighted
125-term expansion was 4.5 cm-1. Thisσ is only 0.9 cm-1 larger
than the σ of 3.6 cm-1 obtained for the initial 336-term
representation. Preliminary rovibrational calculations using the
125-term PES expansion in combination with the DVR-
(+R)+FBR method described below (section 3) gave theν1

andν5 fundamentals for HCCN, which deviate by 14.5 and 5.4
cm-1 from experiment. Our analytical representation was hence
refined by adjusting the parametersC200000 and C000200 to
available experimental data for theν1 stretching6 and ν5

bending11 frequencies. The expansion coefficientsCijklmn of the
refined 125-term PES are listed in Table 5. The original values
of C200000andC000200were 0.7468463 and 0.1744197, respec-
tively.

For the equilibrium configuration, the MR-ACPF PES gives
the harmonic frequencies of 3355, 1803, 1173, 553, 441, and
400 cm-1 for HCCN and of 2488, 1794, 1134, 506, 431, and
331 cm-1 for DCCN.

Figure 1. Description of the internal geometry of HCCN (a) in terms
of the bond-distance-bond-angle internal coordinatesr1, r2, r3, R, â,τ
and (b) in terms of the orthogonal (diatom+ diatom) internal
coordinatesR, d1, d2, θ1, θ2, andø.

V ) ∑
ijklmn

Cijklmnx1
i x2

j x3
kPl

n(cR)Pm
n (câ) cos(nτ) (1)

xi ) 1
ai

[1 - e-ai(ri/ri
ref-1)] (2)

TABLE 1: Expansion Coefficients Cijklmn (in Atomic Units)
of Eq 1 for the Adjusted Six-Dimensional MR-ACPF PES
Derived in This Work for the 3A ′′ Electronic State of
HCCNa

ijklmn Cijklmn ijklmn Cijklmn ijklmn Cijklmn

000000 -0.0000836 000310-0.0016181 010010 0.1333863
200000 0.7423250 000020-0.4014165 010020 0.1001659
300000 -1.2529641 000120-0.4477221 010100 0.8068241
400000 1.2940035 000220 0.1329813 010110 1.1190861
500000 -1.1970301 000030-0.1959100 010120 0.3713975
600000 0.9368890 000130-0.2138155 010200 0.5152400
700000 -0.4416142 000230 0.0274065 010210 0.4998266
020000 1.2419591 000040-0.0387080 010220 0.1619246
030000 -2.9420632 000140-0.0431464 010300 0.0558572
040000 3.9165475 000111 0.0110927 010400 0.0233452
050000 -2.4605068 000211 0.0085826 010111 0.0762339
060000 -0.6459143 000311 0.0059613 010121-0.0115625
002000 1.6724940 000411-0.0010206 010211 0.0817841
003000 -5.8652217 000511 0.0003250 010311 0.0277756
004000 7.8379300 000121 0.0078587 011010 0.1585303
005000 -5.7335005 000221 0.0084313 011100-0.2973279
006000 2.0925619 000321 0.0033287 011111 0.0491293
007000 -0.5721966 000421-0.0004627 012100 1.4686769
011000 0.8697992 000131 0.0015849 020010 0.0403994
012000 2.0180161 000231 0.0019083 020100-0.6353160
013000 -2.1399322 000331 0.0009184 020200-0.5613150
014000 -2.1759310 000322 0.0003446 020300-0.1753884
021000 -1.1684469 000422 0.0000690 020111-0.0991483
022000 3.2219910 000232-0.0000945 021010 0.2756852
023000 3.6368392 001010 0.5458700 021200 0.3383835
031000 -2.6150563 001020 0.5965830 030010 0.1357801
032000 -3.3335227 001030 0.1533578 030100-0.2013531
101000 0.0217615 001100-0.5312928 030200-0.1253704
110000 0.0021936 001110-0.2864925 100010 0.1117913
120000 -0.0357270 001200-0.3406292 100020 0.0411506
201000 0.0144122 001210-0.1293005 100100-0.1076529
210000 0.0086634 001300-0.0681403 100200-0.0385778
220000 -0.1064960 001400-0.0189303 100300-0.0095890
000100 -0.0868363 001111-0.0670670 100111-0.0076520
000200 0.1745690 001211-0.0731704 100211-0.0051029
000300 -0.0139063 001311-0.0235973 101100 0.0284819
000400 -0.0101806 001222 0.0016467 110100 0.0455224
000500 -0.0043744 002010-0.7734884 200100-0.1073827
000600 -0.0008691 002020-0.2828110 200200-0.0629688
000010 -0.3129661 002100 0.0868854 200300-0.0198132
000110 -0.4723798 002111 0.0366603 300100 0.0346831
000210 0.2439514 003200 0.1573389

a The reference distancesr1
ref ) 2.01964a0, r2

ref ) 2.49804a0, and
r3

ref ) 2.25743a0 and the exponential parametersa1 ) 0.4434,a2 )
0.8009, anda3 ) 0.3948 are used for the Morse coordinatesxi defined
by eq 2.
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B. Topography of the PES.The two-dimensional maps of
the adjusted six-dimensional MR-ACPF PES are displayed in
Figure 2. These are made by freezing the remaining four
coordinates at their equilibrium values. The contour plots
involving {R,τ} and {â,τ} (the second and third plot in the
second row of Figure 2) clearly show that HCCN is a planar
molecule possessing only a trans minimum. The geometrical
parameters of the PES minimum are given byr1

e ) 2.020a0,
r2

e ) 2.499a0, r3
e ) 2.257a0, Re ) 146.6°, âe ) 174.7°, and

τe ) 180°. As seen in Figure 2, the coupling between the HCC
bending angleR and the CC bond lengthr2 is especially
prominent. Figure 2 also shows the variation ofr1, r2, r3, â, τ
along the minimum energy path (MEP) in the direction ofR,
as well the variation ofτ along the MEP forâ. The MEP along
a chosen coordinate is computed by minimizingV with respect

to the remaining five coordinates. Along the MEP forR, the
optimum triple (r1, r2, r3) assumes the value of (2.042a0, 2.565a0,
2.236a0) for R ) 120° and of (2.009a0, 2.447a0, 2.281a0) for
R ) 180°, yielding changes of-0.033a0, -0.118a0, and
+0.045a0 for r1, r2, andr3, respectively. Malmquist et al.18 and
Koput21 also found that the straightening of the HCC bending
angle decreasesr2(CC) and increasesr3(CN) in HCCN.

The variation of the potential energy along the MEP forR,
â, andτ is displayed in Figure 3. The barrier to linearity for
HCC and CCN is calculated to be 287 and 84 cm-1 along the
respective MEPs. The torsion barrier, i.e., the energy difference
between the optimum cis and trans HCCN conformations, is
84 cm-1. In Figure 3, we also show the one-dimensional cut,
Vcut, of the PES along the angleR, which is obtained by freezing
the other five coordinates at their equilibrium values. OnVcut,

TABLE 2: Fundamental Transitions of HCCN and DCCN (in cm-1)a

HCCN DCCN

this work expt ref this work expt ref

ν1 3246.66 3246.6573(5) 6 2436.64 2436.3723(7) 9
[25.94] [26.80] 6 [24.44] [25.42] 9

ν2 1733.71 ∼1750 8 1730.27
1735 3 1729.5 3

[49.90] [67.84]
ν3 1178.57 1178.5 3 1150.65 1127 3

[23.03] [-9.86]
ν4

1 430.02 365(15) 7 407.48 367(15) 7
383(20) 6
458 3 405 3

[-20.39,-47.50] [-21.05,-48.95] 7 [-18.36,-53.68] [-19.07,-53.86] 7
ν5

1 128.96 128.907968(40) 11 75.65 74.845(2) 9
145(15) 7 90(15) 7

[17.88,-21.98] [18.16,-22.40] 7 [8.67,-41.12] [8.70,-41.93] 7

a The number in brackets gives the differenceB0 - BV (in MHz) between the ground-state rotational constantsB0 and effective rotational constant
BV for the vibrational stateV. For the MR-ACPF PES,B0 is calculated to be 0.364872 and 0.329029 cm-1 for HCCN and DCCN, respectively. The
corresponding experimental values due to McCarthy et al.7 are 0.366465 and 0.330441 cm-1 for HCCN and DCCN, respectively.

TABLE 3: Transitions Involving the Bending ν5 and ν4 Vibrationsa

HCCN DCCN

this work expt ref this work expt ref

2ν5
2 343.44 341.73 12 210.89 207.95 12

340(15) 7 215(15) 7
[-27.53] [-1.01] 7 [-32.03] [-30.71] 7

2ν5
0 460.97 435(20) 7 317.92 311(15) 7

[-12.86] [-16.60] 7 [-15.91] [-18.40] 7
(ν4

1,ν5
1)0, 1 564.77 525(20) 7 502.35

[-34.12] [-35.84] 7 [-40.35]
(ν4

1,ν5
1)0, 0 575.81 540(20) 7 516.77

[-26.59] [-25.55] 7 [-107.8]
(ν4

1,ν5
1)2, p 560.10 495.97

3ν5
3 618.23 625(20) 7 386.84 400(20) 7

[-44.79] [-2.53] 7 [-43.69] [-43.12] 7
3ν5

1 725.75 514.90
[-9.43,-38.50] [56.56,-53.20]

4ν5
4 939.71 593.89

4ν5
2 1007.17 697.41

[-45.00] [-96.43]
4ν5

0 1088.61 744.02
[-37.83] [-58.15]

2ν4
0 851.09 837.76

2ν4
2 860.41 821.85

3ν4
1 1273.46 1261.92

3ν4
3 1290.79 1240.88

4ν4
0 1686.79 1689.92

4ν4
2 1695.14 1681.57

4ν4
4 1721.89 1663.58

a For more details, see Table 2.
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the arrangement withR ) 180° is lying 528 cm-1 above the
absolute minimum and is thus 241 cm-1 higher than the
corresponding MEP value. A similar one-dimensional cut of
the PES in the direction ofâ shows no noticeable deviation
from the corresponding MEP.

3. Method for Rovibrational Calculations

In the bound state variational calculations for the rovibrational
energies of H/DCCN, we have employed the orthogonal (diatom
+ diatom) internal vectorsR, d1, d2 in the body-fixed formula-
tion.31 The vectorsd1 andd2 are chosen to be the HC and CN
bond distance vectors, whereasR is the vector joining the centers
of mass of the HC and CN subunits. The internal vectors are
parametrized in terms of the three distancesR, d1, andd2, the
two bending anglesθ1 and θ2, and the dihedral angleø,
schematically shown in Figure 1b. The reduced massesµR, µd1,
and µd2 associated withR, d1, and d2 are given for HCCN
explicitly by µd1 ) mHmC/(mH + mC), µd2 ) mCmN/(mC + mN),
andµR ) mHCmCN/M, wheremA stands for the mass of the unit
A and M for the overall mass of HCCN. The two-vector
embedded body-fixed (BF) reference frame is chosen such that
thez-axis of the BF is aligned with the vectorR and thez ∧ x
BF plane is the plane spanned byR andd1.

The MR-ACPF PES minimum in terms of the (diatom+
diatom) coordinates is given byRe ) 3.845a0, θ1

e ) 149.6°,
θ2

e ) 2.31°, andøe ) 180°, while d1
e ) r1

e andd2
e ) r3

e.
For an entirely orthogonal set of the internal vectors, such as

the (diatom+ diatom) vectors of Figure 1b, the body-fixed

expression of the kinetic energy operatorT̂ from ref 31 can be
rewritten as a sum of several contributions

whereT̂vib andT̂rot stand for the vibrational and rotational parts.
The termT̂cv is Coriolis-like kinetic coupling in the vibrational
angular subspace, whereasT̂cr is Coriolis-like kinetic coupling
between the rotation and vibrational angular motion. The four
contributions are explicitly given by

where Ĵ is the angular momentum of the nuclear frame and
T̂str ) T̂str(R) + T̂str(d1) + T̂str(d2) stands for the kinetic energy
of the three stretching vibrations. The termT̂cv affects only
vibrational energies and may lead to vibrationall-type doubling/
resonance effects. Rotationall-type doubling/resonance effects
may arise fromT̂cr.

In eqs 4-7, ∂θ1 stands for∂/∂θ1, ∂2
θ1 for ∂2/∂θ1

2, andfR for
1/µRR2. The functionf (R, di), defined as 1/µRR2 + 1/µdidi

2, is
the inverse of the reduced mass associated with the bending
coordinateθi. The vibrational angular momentum operator
associated withd2 is l̂2 ) l̂2(θ2,ø). The body-fixed projections
of Ĵ are Ĵx, Ĵy, Ĵz.

The standard rotation-angular basis in the body-fixed formu-
lation is given for tetratomic molecules by the following
product31

TABLE 4: Combination Bands Involving the Stretching ν1 Vibration a

HCCN DCCN

this work expt ref this work expt ref

ν1 + ν5
1 3356.40 3355.504(2) 10 2500.26 2499.572(1) 9

[43.73, 1.70] [45.33, 2.76] 10 [37.18,-16.53] [32.72,-19.11] 9
ν1 + ν5

1 - ν5
1 3227.44 3226.597(2) 6 2424.60 2424.727(1) 9

ν1 + 2ν5
0 3690.06 2750.61

[7.48] [11.85] [12.29] 9
ν1 + 2ν5

0 - 2ν5
0 3229.10 2432.68 2432.1316(11) 9

ν1 + 2ν5
2 3552.69 2623.67

[-2.68] [24.68] 12 [-8.74] [-5.07] 9
ν1 + 2ν5

2 - ν5
1 3423.73 3420.6663(6) 12 2546.71 2544.7432(9) 12

ν1 + 3ν5
3 3809.80 2788.33

ν1 + 3ν5
3 - 2ν5

2 3464.17 3460.9116(8) 12 2575.46 2573.4795(7) 12
ν1 + 2ν5

2 - 2ν5
2 3209.25 3207.8482(6) 12 2412.78 2411.636(3) 9

ν1 + ν4
1 3673.97 2836.22

[5.41,-22.63] [8.76,-23.32] 6 [9.03,-36.38]
ν1 + ν4

1 - ν4
1 3243.95 3244.084(1) 6 2428.74

ν1 + ν5
1 - ν1 109.01 108.85 12 62.96 63.20 12

ν1 + 2ν5
2 - ν1 303.84 302.92 12 185.07 183.22 12

ν1 + 3ν5
3 - ν1 558.77 555.98 12 347.76 345.06 12

ν1 + 2ν5
0 - ν1 443.40 313.97

a For more details, see Table 2.

TABLE 5: Bending Frequenciesν5
eff (in cm-1) of HCCN and

DCCN for the Ground-State (gs),ν1, ν2, and ν3
a

HCCN DCCN

ν5
eff Veff

lin θ1
min ν5

eff Veff
lin θ1

min

gs 129 257 148 76 274 150
ν2 137 179 150 92 193 152
ν3 116 323 147 59 333 149
ν1 109 332 146 63 346 148

a The height of the barrier to linearityVeff
lin (in cm-1) and the

location of the minimumθ1
min (in deg) are additionally shown.

T̂ ) T̂vib + T̂rot + T̂cv + T̂cr (3)

T̂vib ) T̂str + T̂bend (4)

2T̂bend) f (R, d2) l̂2
2

-f (R, d1)[p
2(∂2

θ1
+ cotθ1∂θ1

) - (Ĵz - l̂2z)
2/sin2θ1] (5)

2T̂rot ) fR[Ĵ2 - 2(Ĵz - l̂2z)
2] (6)

T̂cv ) fR(- ip l̂2y∂θ1
+ cotθ1l̂2xl̂2z) (7)

T̂cr ) fR[ipĴy∂θ1
- Ĵxl̂2x - Ĵyl̂2y - Ĵzl̂2z

+ cotθ1(ĴxĴz - Ĵxl̂2z - l̂ 2xĴz)] (8)

Ph l1

|k-K|(cosθ1)Yl2

k(cosθ2,ø)|JKM〉 (9)
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wherePh l
k(cosθ) are normalized associated Legendre functions

and Yl2

k (cosθ2,ø) are spherical harmonics with the Condon-
Shortley phase convention.32 The quantum number of the
projection of l̂2 onto thez-axis of the BF isk. The symmetric
top eigenfunctions33 are denoted by|JKM〉, whereM andK are
the quantum numbers for the space-fixedZ-projection and the
body-fixed z-projection of Ĵ, respectively. The action of the
kinetic energy operatorT̂ of eq 3 on the basis functions of eq
9 can be solved analytically.31

The total rotational angular momentumJ, its space-fixed
projectionM, and the parityp are strictly conserved quantum
numbers for the eigenstates of a tetratomic molecule. For a given
J, a parity-adapted angular basis can thus facilitate the computa-
tion. A detailed description of the parity-adapted rotation-angular
basis functions employed in the present work can be found in
ref 31.

In actual computations, the discrete variable representation
(DVR) for the bending anglesθ1andθ2 is used together with
the finite basis representation (FBR) of the dihedral angleø,
the eigenfunction basis ind1, d2, and the discretized Jacobi
coordinateR. The DVR+FBR is combined with a sequential
diagonalization/truncation scheme. This approach is termed
DVR(+R)+FBR34 and involves no dynamical approximation.
In the DVR(+R)+FBR method, contributions to the rovibra-

tional Hamiltonian are taken sequentially into account. After
the inclusion of new term(s), the higher-dimensional Hamil-
tonian matrix is calculated and diagonalized, while the basis
set is truncated by retaining only a preselected number of
eigenvectors for subsequent computations. For chosenK, k, Rz

and parityp, whereRz stands for a discrete point inR, the terms
T̂bend+ T̂str(d1) + T̂str(d2), andT̂rot are first considered together
with the potential energy contribution diagonal ink. In the next
step, the termT̂cv is added along with the potential energy
contribution nondiagonal ink, resulting in five-dimensional
eigenvalue problems for each of the pairs (K, Rz). The inclusion
of the kinetic energy inR leads to the formulation of six-mode
eigenvalue problems for a fixedK. The final nine-dimensional
rovibrational Hamiltonian matrix is constructed by including
the termT̂cr and is of relatively modest size owing to a very
efficient contraction scheme of the DVR(+R)+FBR approach.
At different stages of calculation, the Hamiltonian matrices are
diagonalized by conventional dense matrix algorithms to give
both eigenvalues and eigenfunctions.

A. Adiabatic Projection Scheme.The computational strategy
of the DVR(+R)+FBR approach readily permits the construc-
tion of the adiabatic (zero-order) basis, consisting of eigenvectors
computed in the adiabaticR-stretch approximation.

Figure 2. Two-dimensional contour plots of the six-dimensional MR-ACPF PES, obtained by freezing the remaining four coordinates at their
equilibrium values. Contour lines are drawn in intervals of 250 cm-1 with the first contour placed at 50 cm-1. The dashed lines show the variation
of the internal coordinate shown on they-axis along the minimum energy path for the coordinate displayed on thex-axis.

Figure 3. Minimum energy path (solid line) along the HCC angleR, the CCN angleâ, and the torsion angleτ. The one-dimensional cutVcut along
R is given by the dashed line.
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The five-mode eigenstates calculated for a grid of the discrete
points Rz form adiabatic potentialsVadi

i for R. The stretching
states |R〉, adiabatically separated from the remaining five
vibrational modes, can be obtained for theith five-mode state
by employing the adiabatic HamiltonianĤadi

i ) Ĥadi
i (R), con-

sisting of the kinetic energyT̂str ) T̂str(R) and the adiabatic
potential Vadi

i . To monitor the evaluation of the adiabatic
representation within the DVR(+R)+FBR computational scheme,
the quantum state character correlation scheme is used. The latter
scheme was originally developed for the adiabatic torsion
approximation and the DVR(6) approach.35

The adiabatic vectors|R, i) ) |R〉| i〉 are used in the DVR-
(+R)+FBR for the calculation of adiabatic expansions of
numerically exact wave functions| n〉

The latter expansion supplies a zero-order origin of|n〉 by
locating the dominant adiabatic contribution among all|R, i),
providing, thus, an important foundation for quantum number
assignments. The adiabatic projection of eq 10 is easily extended
to include also theJ * 0 situation.

B. Numerical Details. The numerical parameters used to
compute the rovibrational energy levels of H/DCCN forJ )
0-4 by means of the DVR(+R)+FBR are summarized here.
The pointwise representation of the Jacobi distanceR is obtained
in the spirit of the potential optimized DVR method of Echave
and Clary.36 For HCCN, we used 12 discreteRz points
distributed nonevenly between 3.54a0 and 4.43a0. Three eigen-
functions ford1 and five eigenfunctions ford2 were constructed
for the reference potential determined by the equilibrium
H/DCCN geometry. The maximum valuekmax for the projection
quantum numberk was 5 inJ ) 0 and 9 inJ ) 4 calculations.
The integrals over the dihedral angleø were solved by means
of Gauss-Chebyshev quadrature of order 11. For the bending
angles, Gauss-Legendre DVR points were used, determined
from Plimax

k of k ) 0, 1,‚‚‚, kmax with l1
max of 35 for θ1 andl2

max of
95 forθ2. The Gauss-Legendre DVR set was truncated, keeping
only the points distributed between 90 and 180° for θ1 and
between 0 and 40° for θ2. The primary basis included 347400
functions forJ ) 0 and 3495960 forJ ) 4. The truncation of
the basis set was made with the help of the cutoff parameters

Nk
max, Nz

max, andNK
max, which give the number of eigenvectors

to be saved after the diagonalization of the (K, Rz, k)-blocks,
(K, Rz)-blocks, andK-blocks, respectively. The parametersNk

max,
NR

max, NK
max were chosen to be 150, 800, and 500, respectively.

The size of the six-dimensional matrices of theK-blocks was
thus 9600. The size of the final rovibrational Hamiltonian matrix
was 1000, 1500, 2000, and 2500 forJ ) 1, 2, 3, 4, respectively.

4. Results

Selected results obtained forJ ) 0-4 by means of the DVR-
(+R)+FBR method and the MR-ACPF PES are shown in
Tables 2-5 and Figures 4-7. In these tables, the level energies
are given relative to the ground vibrational state, calculated to
be 3787.357 cm-1 for HCCN and 3289.913 cm-1 for DCCN.

A. Quantum State Labels.Following the conventional linear
molecule notation, the state assignments can be made in terms
of ν1, ν2, ν3, ν4

l4, andν5
l5. The mode labelsν1, ν2, ν3, ν4, andν5

refer respectively to CH stretch, CN stretch, CC stretch, CCN
bend, and HCC bend, whereasl4, l5 denote the vibrational
angular momentum quantum numbers. The permitted values of
li areVi, Vi - 2, Vi - 4, ..., - Vi for i ) 4, 5.

SinceK, k g 0 holds in the parity-adapted formulation,31 we
employ in the present work the quantum label (V4ν4

|l4|,
V5ν5

|l5|)K,p, wherep stands for parity (p ) 0 for even parity and
p ) 1 for odd parity). In the body-fixed formulation used here,
l5 correlates to the projection quantum numberk. Angular
momentum conservation additionally restrictsl4, l5 to l4 + l5 )
l ) K e J, as seen in eq 9 and ref 31. For quantum states given
by V4 ) 0, we use the labelV5ν5

K, and similar for theV5 ) 0
situation.

The low-lying rovibrational states of HCCN calculated for
J ) 0, 1, and 2 and both parities are found in Figure 4. One
may note that the levelsν4

1 and ν5
1 occur only for J g 1,

whereas the states 2ν5
2, 2ν4

2, and (ν4
1,ν5

1)2,p become accessible
for J g 2. The twoK ) 0 levels shown by the dashed lines in
Figure 4 are assigned (ν4

1,ν5
1)0,p in the notation used here or

ν4
(1 + ν5

-1. The alternative assignment for the twoK ) 2 levels
(ν4

1,ν5
1)2,p of Figure 4 isν4

(1 + ν5
(1.

In the bent molecule notation, the levels 2ν5
0, (ν4

1,ν5
1),0,0 and

(ν4
1,ν5

1)0,1 are respectivelyν5
b, ν4

b, and ν6
b, whereasν5

1 and 2ν5
2

correlate with theK ) 1 andK ) 2 (a-type) transitions from

Figure 4. Low-lying states of HCCN calculated for total rotational angular momentumJ and parityp. The quantum number assignments are made
according to the linear molecular model. The quantum labels of the states denoted bya, b, andc are 3ν5

1, (ν4
1, 2ν5

2)1,p, and (ν4
1, 2ν5

0)1,p, respectively.
For the states shown, the quantum labelK for the projection ofĴ on the body-fixedz-axis is essentially a good quantum number.

|n〉 ) ∑
R, i

CR,i
n|R, i) (10)
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the ground state. The levels assignedν4
1 in Figure 4 are,

however, not easy to interpret by means of the bent molecular
model.

The two-dimensional (θ1,θ2) cuts of the wave function
probability amplitudes for the ground vibrational state, 2ν5

0,
(ν4

1,ν5
1),0,0 and 2ν4

0 of HCCN are shown in Figure 5. The well-
defined nodal patterns seen for 2ν5

0 and 2ν4
0 in Figure 5 clearly

imply the excitation of theθ1 bending motion in 2ν5
0 and the

excitation of theθ2 bending motion in 2ν4
0, confirming the

linear molecule convention for HCCN.
A striking feature in Figure 5 is a large wave function

amplitude seen at the linear geometry,θ1 ) π, even in the
ground vibrational state. This property is also visible in Figure
6, where the wave function probability amplitude integrated over
R, d1, d3, θ2, ø and three Euler angles are shown for the ground
vibrational state,ν5

1, 2ν5
0, 3ν5

1, and 4ν5
0. Although the ground

vibrational state at 3787 cm-1 lies ≈90 cm-1 below the barrier
to linearity, the ground-state wave function amplitude differs
significantly from zero atθ1 ) π. For the levels withl5 ) 1,
the wave function amplitude atθ1 ) π is strictly zero as a
consequence of the rotational symmetry, Figure 6 and eq 9. The
states withl5 * 0 exceed the barrier to linearity.

The vibrationally averaged bending amplitude〈θi - θi
e〉 is

calculated as arccos[〈cos(θi - θi
e)〉]. For the ground vibrational

state, 2ν5
0, (ν4

1,ν5
1),0,0 and 2ν4

0 of Figure 5, the amplitude〈θ1 -
θ1

e〉 describing the quasilinear mode is calculated to be 11.4,

16.0, 10.6, and 12.0°, respectively. For〈θ2 - θ2
e〉, we obtained

4.2, 4.2, 6.3, and 8.0°.
B. Fundamental Transitions. The fundamental transitions

of HCCN and DCCN are summarized in Table 2. The MR-
ACPF PES, adjusted to reproduce experimental wavenumbers
for ν5

1 andν1 of HCCN (section 2), provides a good description
of ν5 andν1 also for DCCN. As seen in Table 2, theν1 andν5

frequencies calculated for DCCN differ by+0.27 and+0.81
cm-1 from the high-resolution spectroscopic results of Sun et
al.9

So far, no high-resolution spectroscopic study has been
reported for theν3 andν4 vibrations of either HCCN or DCCN.
Dendramis and Leroi3 derived from matrix isolation infrared
spectra five fundamental transitions for various isotopically
substituted forms. McCarthy et al.7 and Morter et al.6 estimated
the transition energies ofν4 and ν5 from relative intensity
measurements in the microwave and infrared region, respec-
tively.

Miller et al.8 recorded the high-resolution infrared spectrum
of HCCN in the region of theν2 stretching fundamental and
found six separate vibrational bands. However, no vibrational
identification could be made. Fermi resonance betweenν2 and
ν3 + (ν4

1,ν5
1)0,0 was suggested in ref 8 as a probable intensity

borrowing mechanism in the region ofν2.
In the present work, the energy spectra calculated for HCCN

and DCCN are studied in great detail with the help of the
adiabatic expansions of eq 10. This analysis led to the

Figure 5. Wave function probability amplitudes for the ground vibrational state (gs), 2ν5
0, (ν4

1,ν5
1),0,0 and 2ν4

0 of HCCN for J ) 0. The remaining
four coordinates are kept constant at their equilibrium values. The contours seen in the (θ1,θ2) plane show where the probability amplitude takes
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of its maximum value.
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identification of several resonances involving the fundamental
stretchingν2 andν3 vibrations. For HCCN, we have

and

The HCCN levelsν2, ν3 + (ν4
1,ν5

1),0,0 ν3, and (ν4
1, 3ν5

1)0,0 occur
at 1733.7, 1759.2, 1178.6, and 1185.8 cm-1, respectively. The
ν2 state of DCCN displays no resonance mixing. Forν3 of
DCCN, we obtain

where (2ν4
0, 2ν5

0)0,0 andν3 lie respectively at 1131.2 and 1150.6
cm-1.

The adiabatic projections of eqs 11-13 are given in terms
of the two dominant components, providing at least 81% of the
full-dimensional wave function. For the zero-order vectors, we
employ the notation used by the code, where|R, i) stands for
the adiabatic level withR quanta in the stretching (R) vibration
andi quanta in the five-mode vibration, as described in section
3.1.

Adiabatic projection methods are useful for quantitative
studies on separability of internal molecular motions and for
making quantum number assignments to the calculated full-
dimensional rovibrational states. The adiabatic (zero-order) basis
is, however, coordinate dependent. To verify eqs 11-13, we
studied several other orthogonal (Jacobi type) descriptions and
found that the levelsν2 and ν3 occur as zero-order mixtures
also for Jacobi type coordinates. These test calculations led
additionally to the conclusion that internal motion of HCCN is
most separable in the (diatom+ diatom) description of Figure
1b.

C. Transitions Involving the Bending ν5 and ν4 and
Stretching ν1 Vibrations. The transitions involving the bending
ν5 andν4 vibrations are summarized in Table 3, whereas Table
4 displays the transitions involving the stretchingν1 vibration.
The level energies in Tables 3 and 4 are in excellent agreement
with high-resolution spectroscopic data of refs 6, 9, 10, and
12, showing a maximum deviation of+3.3 cm-1 for the
combination bandν1 + 3ν5

3 - 2ν5
2 calculated at 3464 cm-1 for

HCCN. One may note that in Table 4 we also list the energies
ν1 + nν5

(n - ν1 (n ) 1, 2, 3), which are obtained in the
semirigid bender calculations of Hung et al.12

The energy levels of the pureν4 and pureν5 bending
vibrations of HCCN are graphically presented in Figure 7. The
states ofν4 follow in particular closely the energy pattern of
the two-dimensional (anharmonic) oscillator.

To quantify the degree of quasilinearity of molecular vibra-
tions, Yamada and Winnewisser37 introduced the parameterγ0,
given by

Our results from Tables 2 and 3 give for the quasilinearν5

bending modeγ0 of -0.12 for HCCN and of+0.05 for DCCN.
On the other hand, we obtainγ0 of -1.02 and-0.95 for theν4

of HCCN and DCCN, respectively, as expected for a degenerate
bending mode in well-behaved linear molecules.37

In Figure 7, the states withli * 0 are doubly degenerate.
Pronouncedl-type splitting is, however, found only for the
K ) 1 states. Forν5

1 and ν4
1 of HCCN, the l-type doubling

constantqv is determined to be 40.1 and 27.6 MHz, which
compare well to 40.6 and 27.9 MHz predicted by McCarthy et
al.7 For theν5

1 andν4
1 states of DCCN, the calculatedqv values

of 49.9 and 35.6 MHz agree within 0.8 MHz with the
experimental data7 of 50.6 and 34.8 MHz. For the statesν1 +
ν5, we obtainedqv of 42 MHz for HCCN and of 54 MHz for
DCCN, which should be compared toqv of 44 and 52 MHz
estimated by Morter et al.6 and Sun et al.9

As clearly seen in Figure 7, the level separation between
V4ν4

l0 and V4ν4
V4 is much smaller than the separation between

V5ν5
l0 andV5ν5

v5, wherel0 ) 0 for Vi even andl0 ) 1 for Vi odd.
For HCCN and DCCN, the level 2ν5

0, e.g., lies 118 and 108
cm-1 above 2ν5

2, respectively. An interesting difference be-
tween HCCN and DCCN is found in the ordering of the 2ν4

0

and 2ν4
2 states, Table 3. Whereas the levels 2ν4

l4 of HCCN show
the expected ordering with the level 2ν4

0 being 9 cm-1 below
2ν4

2, the opposite is found for DCCN. In the latter case, the
level 2ν4

0 is 16 cm-1 above 2ν4
2,

The bending HCC frequency obtained for four different
stretching excitations are found in Table 5. The effective
frequenciesν5

eff are calculated asEνi+ν5 - Eνi using the (J ) 1,
p ) 1) values. As seen in Table 5, the excitation ofν1 andν3

lowers ν5
eff of HCCN approximately by 20 and 13 cm-1 and

Figure 6. Wave function probability amplitudes integrated over the
five internal coordinatesR, d1, d2,θ2,ø and three Euler angles for the
ground vibrational state (gs), ν5

1, 2ν5
0, 3ν5

1, and 4ν5
0 of HCCN. The

levels shown are calculated forJ ) 1 andp ) 1. The effective ground-
state potential energy profile alongθ1 is denoted byVeff

0. The horizontal
lines indicate the level energy.

|ν2〉 ≈ 0.799| 0, 9)- 0.439| 1, 2) (11)

|ν3 + (ν4
1,ν5

1)0, 0〉 ≈ 0.534| 0, 9)+ 0.725| 1, 2)

|ν3〉 ≈ -0.428| 0, 5)+ 0.818| 1, 0) (12)

|(ν4
1, 3ν5

1)0, 0〉 ≈ -0.803| 0, 5)- 0.447| 1, 0)

|(2ν4
0, 2ν5

0)0, 0〉 ≈ 0.715| 0, 7) - 0.567| 1, 0) (13)

|ν3〉 ≈ 0.560| 0, 7)+ 0.720| 1, 0)

γ0 ) 1 - 4[E(νi
1) - E0]/[E(2νi

0) - E0] (14)
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ν5
eff of DCCN by 13 and 17 cm-1, yielding changes up to 22%.

On the other hand,ν5
eff increases by 12 and 16 cm-1 upon

excitation ofν2 in HCCN and DCCN, respectively.
To gain a more general insight into the dynamics of the

quasilinearν5 mode, we have also carried out detailed investiga-
tions of effective (adiabatic) potential energy profiles along the
angleθ1. For various excitations of other vibrational modes,
the effective bending profiles were calculated in the spirit of
the DVR(+R)+FBR strategy (section 3) by solving five-
dimensional eigenvalue problems for a chosenθ1 grid.

The effectiveθ1 profiles obtained for the five-mode ground
state,ν1, ν2, andν3 are depicted in Figure 8, whereas the height
of the barrier to linearity,Veff

lin, and the location of the
minimum, θ1

min, are presented in Table 5. As seen there, the
height of the barrier to linearity on the five-mode ground-state
profile is 30 cm-1 lower than the corresponding MEP value of
287 cm-1. Upon excitation ofν1 andν3, the barrier to linearity
increases by 75 and 66 cm-1 for HCCN and by 72 and 59 cm-1

for DCCN relative to the ground-state value. At the same time,
ν2 excitation introduces lowering ofVeff

lin by 78 cm-1 for HCCN
and by 81 cm-1 for DCCN. According to Table 5, the effective
bending frequencyν5

eff nicely correlates with the effective
barrier heightVeff

lin, i.e., the higher the barrier to linearity, the
lower the effective bending frequency.

D. Rotational constants.In addition to the transition energies,
Tables 2-4 also give the difference∆Bv ) B0 - Bv between
the ground-state rotational constantB0 and the effective

rotational constantBv for the vibrational stateV. TheBv values
were determined by a least-squares fit of the calculated
rovibrational energies to the following approximate expression

whereTv stands for the term energy.
The ground-state rotational constantB0 is calculated to be

0.364872 cm-1 for HCCN and 0.329029 cm-1 for DCCN. They
are 0.0016 and 0.0014 cm-1 smaller than the experimental
values of 0.366465 and 0.330441 cm-1 derived from the
millimeter spectra.7 On the other hand, the theoretical results
of Koput,21 which read 0.367468 and 0.331676 cm-1, overes-
timateB0 by 0.0010 and 0.0012 cm-1. One may also note that
the equilibrium parameters (r1

e, r2
2, r3

e,Re,âe) obtained here
(section 2.2) differ by (0.0a0, 0.011a0, -0.016a0, -1.7°, 0.7°)
from the best estimate of Koput (2.020a0, 2.510a0, 2.241a0,
144.9°, 175.4°) determined at the CCSD(T) level of theory.

The∆Bv calculated for the fundamental transitions in Table
2 agree remarkably well (within 1.5 MHz) with the experimental
values3,6-9,11 for both HCCN and DCCN. Equally good agree-
ment is also found forν5

1, 2ν5
2, and 3ν5

3 of DCCN in Tables 2
and 3. In the case of HCCN, the experimental and theoretical
rotational constants forν5

1, 2ν5
2, and 3ν5

3 exhibit, however,
different trends. While the experimental rotational constants7

are nearly constant, our results in Table 3 for 2ν5
2 and 3ν5

3 of
HCCN show rather prominent changes of∆Bv with the l5
excitation. Similar behavior is consequently seen for the state
ν1 + 2ν5

2 in Table 4.
McCarthy et al.7 also reported threel ) 0 states at 435, 525,

and 540 cm-1 for HCCN and onel ) 0 state at 311 cm-1 for
DCCN, each possessing a rotational constant somewhat larger
than the ground-stateB value, Table 3. Making use of the∆Bv

computed in the present work, the observedl ) 0 states of
HCCN are readily assigned 2ν5

0, (ν4
1,ν5

1),0,1 and (ν4
1,ν5

1),0,0 while
the l ) 0 state of DCCN is labeled 2ν5

0. For these four states,
the calculated and experimental∆Bv results agree to better than
4 MHz in Table 3.

5. Summary

In this paper, we have presented a detailed study of the
rovibrational energy spectra of HCCN and its isotopomer
DCCN. For the ground electronic state we first developed a
six-dimensional MR-ACPF potential energy surface, which is
subsequently adjusted to give best agreement with experimental
data forν1 andν5 of HCCN. Quantum mechanical calculations
were carried out for total rotational angular momentumJ )
0-4 using the DVR(+R)+FBR method. In addition to the

Figure 7. Energy levels of the pureν4 (left) and pureν5 (right) bending vibrations of HCCN, obtained forJ ) 4. One may note that the levels
associated withl i * 0 are doubly degenerate.

Figure 8. Effective potential energy profiles and the minimum energy
path along the angleθ1. For the purpose of comparison, each of the
curves shown is measured relative to its minimum. The minimum
energy path is denoted by MEP.

Ev ) Tv + BvJ(J + 1) (15)
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transition energies, our study also includes the determination
of spectroscopic parameters, such as effective rotational con-
stants andl-type doubling constants.

The rovibrational energy levels of both HCCN and DCCN
are studied in great detail by means of vibrationally averaged
geometries and adiabatic projection methods. Resonance inter-
action of theν2 stretching mode withν3 + (ν4

1,ν5
1)0,0 is found in

HCCN, whereas theν3 stretching mode of DCCN is coupled
with (2ν4

0, 2ν5
0).0,0 To gain a more general insight into the

dynamics of the quasilinearν5 bending mode, the effective
(adiabatic) energy profiles alongθ1 have been calculated for
various five-mode excitations. For both HCCN and DCCN, we
have found a clear increase in the height of the effective barrier
to linearity for the excitedν1 and ν3, resulting in the lower
effectiveν5 bending frequency. On the other hand,ν2 excitation
lowers the barrier to linearity and increases the effectiveν5

frequency.
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