5520 J. Phys. Chem. R006,110,5520-5529

Six-Dimensional Potential Energy Surface and Rovibrational Energies of the HCCN Radical
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We report large-scale quantum mechanical calculations for the HCCN radical in its ground electronic state.
A six-dimensional potential energy surface based on MR-ACPF/cc-pVQZ ab initio energy points is developed
and adjusted to reproduce experimental findingsv@)and v1 of HCCN. Rovibrational energy levels of

HCCN and DCCN are computed for total rotational angular momedten®—4 by making use of combined
(functional+ point wise) coordinate representations together with contraction schemes resulting from several
diagonalization/truncation steps. The classical barrier to linearity is determined to be 28Bp@ctroscopic
parameters are calculated for low lying states and compared with available experimental data. Energy patterns
attributed to thev, bending mode and to the quasilinearbending mode are identified. It has been also
found thatv, andvs + (v5,v2)°° are coupled in HCCN, while the mixing betweenand (25, 2v)°0is seen

in DCCN.

1. Introduction purpose of our study is to construct a potential energy surface
and to compute rovibrational energy levels. Another aim is to
study the quasilinears mode under realistic conditions of the
vibrating-rotating molecule and to clarify characteristic energy
patterns. Our numerical results for H/DCCN are of interest for
studies on tetratomic molecules involving a hydrogen atom
attached to a nearly linear chain of heavy atoms, such as, e.g.,
HCNO, HNCO, and HNCS.

In section 2, we address the potential energy surface (PES)
constructed in the present work. The computational method used
to obtain rovibrational energies fdr= 0—4 is briefly explained
in section 3. Our results for HCCN and DCCN are discussed
in section 4. Section 5 contains our concluding remarks.

Cyanocarbene, HCCN, has been subjected to extensive
experimentdi14 and theoretical analys&22 in the last 40
years. The ground electronic state of the radical was found to
have triplet multiplicity’=* In the early work on HCCN, great
effort was put into answering the question whether the radical
is linear or bent %1519 A |ow barrier to linearity was first
estimated by theoretical meal¥s!’ From a detailed microwave
study of isotopically substituted HCCN, Brown et al. deduced
in 1990 an unusually short CH bond length, what led to the
conclusion that HCCN may possess a quasilinear struefline.
vs fundamental transition was observed at 128.907968(40} cm
for HCCN!! and at 2243.72708(21) GHz (74.843 thfor
DCCN® by means of the far-infrared laser magnetic resonance
technique. Malmquist et a8 and Koput! determined one-
dimensional optimum energy profiles along the HCC angle and A, Construction of the PES.The six-dimensional potential

employed them in conjunction with the semirigid bender energy surface for the ground\(’) electronic state of HCCN
approacl"?.?' However, this model was found to be insufficient was scanned by the multireference averaged Coup|ed_pair_

2. Potential Energy Surface

for quantitatively describing the nuclear motion in HCEN1 functional (MR_ACPF) methoa‘}*27 using the correlation
We refer to refs 11 and 21 for an overview of the previous consistent valence quadrupie{cc-pVQZ) basis set. The
experimental and theoretical studies on HCCN. Complete Active Space SCF (CASSCF) method was employed

In the present paper, we have undertaken a detailed full- to optimize the orbitals. All calculations were performed with
dimensional quantum mechanical study of HCCN and DCCN the MOLPRO suite of progran®§ The nuclear coordinate space
in the ground electronic state. The motivation for this work is was parametrized in terms of the bond-distance-bond-angle
provided by the recent high-resolution spetttaof HCCN and coordinatesy, r, r3, a, 5, andz, shown in Figure 1a. Here,
DCCN, which have established the frequencies ofiElCC) ry = r(H=C), r, = r(C—C), andrz = r(C—N). The two in-
bending and1(HC) stretching vibrations to high accuracy. The plane bending angle§]HCC andJCCN, are denoted respec-
tively by o and 3, whereasr stands for the dihedral angle

T Part of the special issue “John C. Light Festschrift”. measured from the cis side. The PES was calculated for the
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TABLE 1. Expansion Coefficients Cimn (in Atomic Units)

N of Eq 1 for the Adjusted Six-Dimensional MR-ACPF PES
I3 Derived in This Work for the 3A" Electronic State of
HCCN?
C B ijklmn Cikimn ijklmn Cijkimn ijklmn Cikimn

000000 —0.0000836 000310—0.0016181 010010 0.1333863
200000 0.7423250 00002G-0.4014165 010020 0.1001659
300000 —1.2529641 000120—0.4477221 010100 0.8068241
400000 1.2940035 000220 0.1329813 010110 1.1190861
500000 —1.1970301 000030—0.1959100 010120 0.3713975
600000 0.9368890 00013G-0.2138155 010200 0.5152400
700000 —0.4416142 000230 0.0274065 010210 0.4998266
020000  1.2419591 00004G-0.0387080 010220 0.1619246
030000 —2.9420632 000140—0.0431464 010300 0.0558572

ﬂ) 040000 3.9165475 000111 0.0110927 010400 0.0233452
050000 —2.4605068 000211 0.0085826 010111 0.0762339
060000 —0.6459143 000311 0.0059613 0101210.0115625
(@ (b) 002000 1.6724940 000411-0.0010206 010211 0.0817841
Figure 1. Description of the internal geometry of HCCN (a) in terms 003000 —5.8652217 000511  0.0003250 010311  0.0277756
of the bond-distance-bond-angle internal coordinaies,, rs, o, f,7 004000 ~ 7.8379300 000121  0.0078587 011010  0.1585303

and (b) in terms of the orthogonal (diator: diatom) internal 005000 —5.7335005 000221  0.0084313 0111060.2973279
coOrdinatesR, o, o, O, O, andy, 006000 2.0925619 000321 0.0033287 011111  0.0491293
P T TR e 007000 —0.5721966 000421—0.0004627 012100 1.4686769

. . . 011000 0.8697992 000131 0.0015849 020010 0.0403994
The calculated potential energies were in the range from 012000 2.0180161 000231 0.0019083 02016@.6353160

—131.21428, to —130.98376&n. o . 013000 —2.1399322 000331  0.0009184 0202060.5613150
The ab initio points were fitted to the six-dimensional 014000 —2.1759310 000322 0.0003446 0203000.1753884
analytical expression 021000 —1.1684469 000422  0.0000690 0201140.0991483

022000 3.2219910 000232-0.0000945 021010 0.2756852
. e N 023000 3.6368392 001010 0.5458700 021200  0.3383835
V="% CiumXeXsP'(c,)Pr(Cs) cosgr) (1) 031000 —2.6150563 001020 0.5965830 030010 0.1357801
ijkTmin 032000 —3.3335227 001030 0.1533578 0301060.2013531
101000 0.0217615 001106-0.5312928 030200—0.1253704
wherec, = cos, ¢z = cog3, andl, m > n. For the stretching 110000 0.0021936 0011106-0.2864925 100010 0.1117913
part, we use a polynomial expansion in the modified Morse 120000 —0.0357270 001200-0.3406292 100020  0.0411506
coordinatess (i = 1. 2, 3) 201000 0.0144122 001216-0.1293005 100100—0.1076529
& 210000 0.0086634 001300-0.0681403 100200—0.0385778
220000 —0.1064960 001400—0.0189303 100300—0.0095890
X = 1[1 — a1 %) 000100 —0.0868363 001111—0.0670670 100111—0.0076520
a 000200  0.1745690 001211-0.0731704 100211—0.0051029
000300 —0.0139063 001311—0.0235973 101100 0.0284819
ded by M CEITh | oV is a 000400 —0.0101806 001222 0.0016467 110100 0.0455224
recommended by Meyer et dl.[he angular part oV Is given 000500 —0.0043744 002010—0.7734884 200100—0.1073827
by a multipole-like expansion, involving associated Legendre 0pos00 —0.0008691 002020—0.2828110 200200—0.0629688
functionsPf(c,), Ph(cs) and Chebyshev polynomials cas), 000010 —0.3129661 002100 0.0868854 2003060.0198132
as suggested previousiy.The functional form of eq 1 is 000110 —0.4723798 002111  0.0366603 300100  0.0346831

invariant under the spatial inversiomr (~ 27 — 1) and 000210  0.2439514 003200  0.1573389

independent from the torsion angtefor linear arrangements 2The reference distance§’ = 2.01964y, 13" = 2.49804p, and
a8 = 0. r¥' = 2.2574%, and the exponential parameteis= 0.4434,a, =

The analytical expansion of eq 1 has six nonlinear parameters,g-ggogz’ ancs = 0.3948 are used for the Morse coordinatesefined
r{Ef and a, which define the Morse coordinatesof eq 2. In Y €q <

the preliminary stages of the fitting, we employed a nonlinear  or the final fitting, we set a standard deviation dtfadate
least-squares technique to obtain optimum values for deth point of energyE; to beE; + 2000 cnT, as previously done,
anda;. In the final fitting, r/* anda were held constant. For  e.g., by Meyer et &2 The standard deviation of the weighted
given riref anda;, the expansion paramete@Gjqmn were deter- 125-term expansion was 4.5 cinThiso is only 0.9 cni! larger
mined by means of a linear least-squares procedure. than theo of 3.6 cnT! obtained for the initial 336-term
Several sets ofi, j, k, I, m, n} were tested in our fitting of representation. Preliminary rovibrational calculations using the
eqg 1 to the ab initio points. The complete quintic expansion, 125-term PES expansion in combination with the DVR-
augmented by the one-dimensional radial contributions up to (+R)+FBR method described below (section 3) gave the
the seventh degree and by the three-dimensional angular parndvs fundamentals for HCCN, which deviate by 14.5 and 5.4
of the sixth degree, was found to be sufficient for achieving a cm~* from experiment. Our analytical representation was hence
reasonable balance between the number of fitting parametersyefined by adjusting the paramete@ o000 and Cooozo0 tO
number of input ab initio points, and associated standard available experimental data for the stretching and vs
deviationo. The chosen ansatz §f, j, k, I, m, n} defines in bending! frequencies. The expansion coefficie@igimn of the
total 336 fitting parameter€ijmn. This number of parameters  refined 125-term PES are listed in Table 5. The original values
was reduced by an extensive search for all significantly of Cygpoo0and Cooozoowere 0.7468463 and 0.1744197, respec-
determinable parameters. Eliminating stepwise all parameterstively.
smaller than twice their standard deviation and most of the For the equilibrium configuration, the MR-ACPF PES gives
parameters smaller than three times their standard deviation,the harmonic frequencies of 3355, 1803, 1173, 553, 441, and
we arrived at a functional six-dimensional expansion consisting 400 cnt! for HCCN and of 2488, 1794, 1134, 506, 431, and
of 125 terms. 331 cnt! for DCCN.
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TABLE 2: Fundamental Transitions of HCCN and DCCN (in cm~1)a

Mladenovicet al.

HCCN DCCN
this work expt ref this work expt ref
V1 3246.66 3246.6573(5) 6 2436.64 2436.3723(7) 9
[25.94] [26.80] 6 [24.44] [25.42] 9
Vo 1733.71 ~1750 8 1730.27
1735 3 1729.5 3
[49.90] [67.84]
V3 1178.57 1178.5 3 1150.65 1127 3
[23.03] [-9.86]
v 430.02 365(15) 7 407.48 367(15) 7
383(20) 6
458 3 405 3
[—20.39,—47.50] [-21.05,—48.95] 7 [-18.36,—53.68] [-19.07,—53.86] 7
v 128.96 128.907968(40) 11 75.65 74.845(2) 9
145(15) 7 90(15) 7
[17.88,—21.98] [18.16,—22.40] 7 [8.67-41.12] [8.70,—41.93] 7

@ The number in brackets gives the differefe— B, (in MHz) between the ground-state rotational const&8pnd effective rotational constant
B, for the vibrational state. For the MR-ACPF PESB; is calculated to be 0.364872 and 0.329029 tfor HCCN and DCCN, respectively. The
corresponding experimental values due to McCarthy éteat 0.366465 and 0.330441 chfor HCCN and DCCN, respectively.

TABLE 3: Transitions Involving the Bending vs and v, Vibrations?

HCCN DCCN
this work expt ref this work expt ref
22 343.44 341.73 12 210.89 207.95 12
340(15) 7 215(15) 7
[-27.53] [~1.01] 7 [-32.03] [30.71] 7
22 460.97 435(20) 7 317.92 311(15) 7
[—12.86] [-16.60] 7 [-15.91] [-18.40] 7
wivdot 564.77 525(20) 7 502.35
[—34.12] [-35.84] 7 [-40.35]
wivd)o.o 575.81 540(20) 7 516.77
[—26.59] [-25.55] 7 [107.8]
(Wivdzr 560.10 495.97
33 618.23 625(20) 7 386.84 400(20) 7
[—44.79] [-2.53] 7 [-43.69] [-43.12] 7
31/% 725.75 514.90
[—9.43,—38.50] [56.56,-53.20]
4y 939.71 593.89
4v§ 1007.17 697.41
[—45.00] [-96.43]
42 1088.61 744.02
[—37.83] [-58.15]
29 851.09 837.76
24 860.41 821.85
31;}1 1273.46 1261.92
33 1290.79 1240.88
4 1686.79 1689.92
41;‘21 1695.14 1681.57
4y 1721.89 1663.58

aFor more details, see Table 2.

B. Topography of the PES.The two-dimensional maps of

involving {a,7z} and{p,7} (the second and third plot in the
second row of Figure 2) clearly show that HCCN is a planar Kopu#?! also found that the straightening of the HCC bending
molecule possessing only a trans minimum. The geometrical angle decreasas(CC) and increases(CN) in HCCN.

The variation of the potential energy along the MEP dor
B, andr is displayed in Figure 3. The barrier to linearity for
7¢ = 18(*. As seen in Figure 2, the coupling between the HCC HCC and CCN is calculated to be 287 and 84 éralong the
respective MEPs. The torsion barrier, i.e., the energy difference
between the optimum cis and trans HCCN conformations, is
84 cntl. In Figure 3, we also show the one-dimensional cut,
Vet of the PES along the angte which is obtained by freezing
the other five coordinates at their equilibrium values. \OH,

parameters of the PES minimum are givenrfy= 2.02x,
rs = 2.49%y, r; = 2.257 a, a® = 146.6, ¢ = 174.7, and

bending anglea. and the CC bond length, is especially
prominent. Figure 2 also shows the variationrgfry, rs, 8, T

along the minimum energy path (MEP) in the directionoof
as well the variation of along the MEP fof5. The MEP along
a chosen coordinate is computed by minimiziWhgith respect

to the remaining five coordinates. Along the MEP for the
the adjusted six-dimensional MR-ACPF PES are displayed in optimum triple €1, r, r3) assumes the value of (2.0822.56%y,
Figure 2. These are made by freezing the remaining four 2.236G) for o = 120° and of (2.008y, 2.447%, 2.28%) for
coordinates at their equilibrium values. The contour plots o = 18C, yielding changes 0of—0.033, —0.118y,, and

+0.045 for ry, rp, andrg, respectively. Malmquist et af.and
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TABLE 4: Combination Bands Involving the Stretching v, Vibration &

HCCN DCCN
this work expt ref this work expt ref

Vit g 3356.40 3355.504(2) 10 2500.26 2499.572(1) 9

[43.73, 1.70] [45.33, 2.76] 10 [37.18,16.53] [32.72-19.11] 9
vit+ve— v 3227.44 3226.597(2) 6 2424.60 2424.727(1) 9
v1+ 202 3690.06 2750.61

[7.48] [11.85] [12.29] 9
vit+ 22— 22 3229.10 2432.68 2432.1316(11) 9
v+ 2vg 3552.69 2623.67

[—2.68] [24.68] 12 £8.74] [-5.07] 9
v+ 2E— e 3423.73 3420.6663(6) 12 2546.71 2544.7432(9) 12
v+ 3 3809.80 2788.33
v+ 30— 22 3464.17 3460.9116(8) 12 2575.46 2573.4795(7) 12
v+ 2v5 — 2% 3209.25 3207.8482(6) 12 2412.78 2411.636(3) 9
Vit 3673.97 2836.22

[5.41,—22.63] [8.76,—23.32] 6 [9.03,-36.38]
v+ v — ) 3243.95 3244.084(1) 6 2428.74
m+vi—m 109.01 108.85 12 62.96 63.20 12
v+ 202 — 1y 303.84 302.92 12 185.07 183.22 12
v+ 3 -y 558.77 555.98 12 347.76 345.06 12
Vit 2vs— 1y 443.40 313.97

aFor more details, see Table 2.

expression of the kinetic energy operaiofrom ref 31 can be

TABLE 5: Bending Frequenciesve  (in cm~1) of HCCN and
rewritten as a sum of several contributions

DCCN for the Ground-State (gs),v1, v2, and v3?

HCCN DCCN A A A A A
eff Vlin min eff Vlin min T = TVib + TfOt + TCV + TCI’ (3)
Vs eff 01 Vs eff 01 A A
gs 129 257 148 76 274 150 WhereT\,ibAandTrot stand for the vibrational and rotational parts.
V2 ﬁg %Zg iig gg %gg ﬁg The termT,, is Coriolis-like kinetic coupling in the vibrational
va . S Lo :
” 109 332 146 63 346 148 angular subspace, wherebgis Coriolis-like kinetic coupling

_ between the rotation and vibrational angular motion. The four
aThe height of the barrier to linearitys; (in cm™) and the contributions are explicitly given by

location of the minimumﬁ"l“in (in deg) are additionally shown.

wa Tstr+ Tbend (4)
the arrangement witlhe = 180° is lying 528 cn1! above the A a o
absolute minimum and is thus 241 chhigher than the 2Tpeng= (R d)l;
corresponding MEP value. A similar one-dimensional cut of —f (R, dy)[A% (%, tcot9,) — (3, — I,,)Isirf0,] (5)

the PES in the direction gf shows no noticeable deviation

from the corresponding MEP. 2—1— = fR[jz _ 2(3 _ Tzz)z] 6)

3. Method for Rovibrational Calculations Tou= fo(— iRl 50, + cot,ll5) (7)

In the bound state variational calculations for the rovibrational
energies of H/DCCN, we have employed the orthogonal (diatom .
+ diatom) internal vector®, ds, ds in the body-fixed formula- —15J3)1 (8)
tion.3! The vectorsd; andd; are chosen to be the HC and CN
bond distance vectors, wheress the vector joining the centers ~ Where J is the angular momentum of the nuclear frame and
of mass of the HC and CN subunits. The internal vectors are Tst = Tsu(R) + Tsu(di) + Teu(d2) stands for the kinetic energy
parametrized in terms of the three distanBesl;, andd,, the of the three stretching vibrations. The teffg, affects only
two bending angles®h: and 0,, and the dihedral angle, vibrational energies and may lead to vibratioRipe doubling/
schematically shown in Figure 1b. The reduced masgesq,, resonance effects. Rotatioraype doubling/resonance effects
and ug, associated wittR, di, and d, are given for HCCN may arise fromTey.
explicitly by ug, = mumd/(My + me), g, = Memv/(Me -+ my), In egs 4-7, 9y, stands foro/001, 8%, for 3%06,2, andfr for
andug = Mycmen/M, wherem, stands for the mass of the unit ~ 1/«rR% The functionf (R, d;), defined as 1/rR? + 1/uqd?, is
A and M for the overall mass of HCCN. The two-vector the inverse of the reduced mass associated with the bending
embedded body-fixed (BF) reference frame is chosen such thatcoordinate 6. The vibrational angular momentum operator
the z-axis of the BF is aligned with the vect& and thez A x associated witltl; is [, = 15(62,%). The body-fixed projections
BF plane is the plane spanned Byandd;. of Jared,, Jy, J.

The MR-ACPF PES minimum in terms of the (diato#n The standard rotation-angular basis in the body-fixed formu-
diatom) coordinates is given bge = 3.84%, 65 = 149.6, lation is given for tetratomic molecules by the following

1
6% = 2.31°, andy® = 18C°, while & = r° andd = S, product
For an entirely orthogonal set of the internal vectors, such as
the (diatom+ diatom) vectors of Figure 1b, the body-fixed

Tor=Tolihd 0y =I5 — I 15 — 315,

+ Cowl(jsz o jxizz

P “MI(cos)Y, (cod, 1) | IKMO (9)
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Figure 2. Two-dimensional contour plots of the six-dimensional MR-ACPF PES, obtained by freezing the remaining four coordinates at their
equilibrium values. Contour lines are drawn in intervals of 250 twith the first contour placed at 50 cth The dashed lines show the variation
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Figure 3. Minimum energy path (solid line) along the HCC anglethe CCN anglée8, and the torsion angle The one-dimensional c"t along
o is given by the dashed line.

wherePf(co®) are normalized associated Legendre functions tional Hamiltonian are taken sequentially into account. After
and Ylkz(cosez,x) are spherical harmonics with the Condon  the inclusion of new term(s), the higher-dimensional Hamil-
Shortley phase conventidA. The quantum number of the tonian matrix is calculated and diagonalized, while the basis
projection ofl, onto thez-axis of the BF isk. The symmetric set is truncated by retaining only a preselected number of
top eigenfunction® are denoted bydKM[JwhereM andK are eigenvectors for subsequent computations. For chEsé&nR,
the quantum numbers for the space-fixégrojection and the and parityp, whereR, stands for a discrete point R the terms
body-fixed z-projection ofJ, respectively. The action of the  T,enq+ Ta(ds) + Ter(d2), and .o are first considered together
kinetic energy operator of eq 3 on the basis functions of eq  with the potential energy contribution diagonakirin the next
9 can be solved analyticalfy. step, the terml,, is added along with the potential energy
The total rotational angular momentud its space-fixed  contribution nondiagonal irk, resulting in five-dimensional
projectionM, and the parityp are strictly conserved quantum eigenvalue problems for each of the palsR,). The inclusion

numbers for the eigenstates of a tetratomic molecule. For a givengs the kinetic energy iR leads to the formulation of six-mode
J, a parity-adapted angular basis can thus facilitate the computa-

. . 9 . i eigenvalue problems for a fixeld. The final nine-dimensional
tion. A detailed description of the parity-adapted rotation-angular

basis functions emploved in the present work can be found in rovibrational Hamiltonian matrix is constructed by including
r;‘SSSl unctions employe € prese ork can be fou the termT, and is of relatively modest size owing to a very

In actual computations, the discrete variable representation efficient contraction scheme of the DVRR)+FBR approach.

(DVR) for the bending angle§:and 6, is used together with At differgnt stages of cal(?ulation, the Ham.iltonian'matrices gre
the finite basis representation (FBR) of the dihedral angle dlagon_ahzed by conven_tlonal dense matrix algorithms to give
the eigenfunction basis id;, dy, and the discretized Jacobi both eigenvalues and eigenfunctions.

coordinateR. The DVR+FBR is combined with a sequential A. Adiabatic Projection Scheme.The computational strategy
diagonalization/truncation scheme. This approach is termedof the DVRHR)+FBR approach readily permits the construc-
DVR(+R)+FBR2* and involves no dynamical approximation. tion of the adiabatic (zero-order) basis, consisting of eigenvectors
In the DVRH*R)+FBR method, contributions to the rovibra- computed in the adiabatiR-stretch approximation.
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Figure 4. Low-lying states of HCCN calculated for total rotational angular momentamd parityp. The quantum number assignments are made
according to the linear molecular model. The quantum labels of the states denated, ndc are 3z, (v;, 209, and ¢, 2v), respectively.
For the states shown, the quantum lakdbor the projection ofJ on the body-fixedz-axis is essentially a good quantum number.

The five-mode eigenstates calculated for a grid of the discrete Ny™ N/"& andN«™# which give the number of eigenvectors
points R, form adiabatic potential¥/, for R. The stretching  to be saved after the diagonalization of th& R, k)-blocks,
states|al] adiabatically separated from the remaining five (K, Rp)-blocks, andK-blocks, respectively. The parametsig
vibrational modes, can be obtained for it five-mode state ~ NrR™, Nx™@*were chosen to be 150, 800, and 500, respectively.
by employing the adiabatic Hamiltonieﬁ‘i;di = Hiadi(R)! con- The size of the six-dimensional matrices of tkéblocks was
sisting of the kinetic energiisy = Ts(R) and the adiabatic  thus 9600. The size of the final rovibrational Hamiltonian matrix
potential Vi,;, To monitor the evaluation of the adiabatic Was 1000, 1500, 2000, and 2500 fo= 1, 2, 3, 4, respectively.
representation within the DVR{R)+FBR computational scheme,
the quantum state character correlation scheme is used. The lattet. Results
scheme was originally developed for the adiabatic torsion
approximation and the DVR(6) approa#h.

The adiabatic vectorgy, i) = |a[Jl iTare used in the DVR-
(+R)+FBR for the calculation of adiabatic expansions of
numerically exact wave functiorisn(]

Selected results obtained fdr= 0—4 by means of the DVR-
(+R)+FBR method and the MR-ACPF PES are shown in
Tables 2-5 and Figures 47. In these tables, the level energies
are given relative to the ground vibrational state, calculated to
be 3787.357 cmt for HCCN and 3289.913 cni for DCCN.

InC= ZC Mo, i) (10) A. Quantum State Labels.Following the conventional linear
£ ol molecule notation, the state assignments can be made in terms
of v1, v, v3, v'j, andv'55. The mode labels1, vs, v3, va4, andvs

The latter expansion supplies a zero-order origin|rmdfi by refer respectively to CH stretch, CN stretch, CC stretch, CCN
locating the dominant adiabatic contribution among|alli), bend, and HCC bend, whereés Is denote the vibrational
providing, thus, an important foundation for quantum number angular momentum quantum numbers. The permitted values of
assignments. The adiabatic projection of eq 10 is easily extendedi arevi, vi — 2, i — 4, ..., — vi fori = 4, 5.
to include also thel = 0 situation. SinceK, k = 0 holds in the parity-adapted formulati&hwe

B. Numerical Details. The numerical parameters used to employ in the present work the quantum labelw{,
compute the rovibrational energy levels of H/DCCN fbr= U5v‘5'5')'<’p, wherep stands for parityf = 0 for even parity and
0—4 by means of the DVR(R)+FBR are summarized here. p= 1 for odd parity). In the body-fixed formulation used here,
The pointwise representation of the Jacobi distdiseobtained Is correlates to the projection quantum numberAngular
in the spirit of the potential optimized DVR method of Echave momentum conservation additionally restritids to l4 + Is =
and Clary®® For HCCN, we used 12 discret®, points | =K < J, as seen in eq 9 and ref 31. For quantum states given
distributed nonevenly between 3d&4nd 4.43,. Three eigen- by vs = 0, we use the |abej,51/§’ and similar for thevs = 0

functions ford; and five eigenfunctions fai, were constructed  sjtyation.

for the reference potentiall determined by the equilibrium The low-lying rovibrational states of HCCN calculated for
H/DCCN geometry. The maximum valk&for the projection 3 _ g 1 and 2 and both parities are found in Figure 4. One
quantum numbek was 5 _|nJ = 0and 9 inJ = 4 calculations. may note that the levels! and v occur only ford = 1,
The integrals over the dihedral anglavere solved by means whereas the states? 2v24an q Q/fvl)lp become accessible

i 4 4175,
of Gauss-Chebyshev quadrature of order 11. For the bending for J = 2. The twoK = 0 levels shown by the dashed lines in

angles, GaussLegendre DVR points were used, determined . i . .
g g P Figure 4 are as&gned»},(vé)ap in the notation used here or

from P, of k=0, 1;++, kn*with 7% of 35 for 1 and|}* of o : .

95 for 6,. The GaussLegendre DVR set was truncated, keeping V41 "’1_ ;’5 : The alterngtl\ﬁ assglnment for the tio= 2 levels
only the points distributed between 90 and 186r 6, and (vavg)=P of Figure 4 isv;~ + vg™.

between 0 and 40for 6,. The primary basis included 347400 In the bent molecule notation, the levelg22(v;,vz) %0 and

functions forJ = 0 and 3495960 fod = 4. The truncation of  (v3,v3)%! are respectively?, 2, and v, whereasv: and 22

the basis set was made with the help of the cutoff parameterscorrelate with theKk = 1 andK = 2 (a-type) transitions from
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Figure 5. Wave function probability amplitudes for the ground vibrational state (g8), (25,v2),%° and 23 of HCCN for J = 0. The remaining
four coordinates are kept constant at their equilibrium values. The contours seen h,éhedlane show where the probability amplitude takes
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of its maximum value.

the ground state. The levels assignebin Figure 4 are, 16.0, 10.6, and 12Qrespectively. Fof#, — GED we obtained
however, not easy to interpret by means of the bent molecular4.2, 4.2, 6.3, and 80
model. B. Fundamental Transitions. The fundamental transitions
The two-dimensional €1,02) cuts of the wave function of HCCN and I_DCCN are summarized in_ Table 2. The MR-
probability amplitudes for the ground vibrational state?,2 ACPlF PES, adjusted to reproduce experimental wavenumbers
(v v9),20 and 29 of HCCN are shown in Figure 5. The well- ~ for vs andv; of HCCN (section 2), provides a good description
defined nodal patterns seen farszand 275 in Figure 5 clearly of vs andvy a|SC|’ folr DCCN. As seen in Table 2, the andvs
imply the excitation of the?; bending motion in azg and the freggenues calcu ated for.DCCN differ by.o'27 and+0.81
excitation of thed, bending motion in 2%, confirming the cng from the high-resolution spectroscopic results of Sun et
linear molecule convention for HCCN. al:

e . ) i So far, no high-resolution spectroscopic study has been
A striking feature in Figure 5 is a large wave function ehqred for the’s andvs vibrations of either HCCN or DCCN.
amplitude seen at the linear geometéy, = =, even in the

o . ) P Dendramis and Lerdiderived from matrix isolation infrared
ground vibrational state. This property is also visible in Figure gpecira five fundamental transitions for various isotopically

6, where the wave function probability amplitude integrated over ¢ netituted forms. McCarthy et aand Morter et af. estimated
R, di, ds, 02, x and three Euler angles are shown for the ground e (ransition energies of, and vs from relative intensity

. . 1 0 1 0 . . . .
vibrational stateys, 2vs5, 3vs, and 4. Although the ground  measurements in the microwave and infrared region, respec-
vibrational state at 3787 cm lies ~90 cnt* below the barrier — tjyely.

to linearity, the ground-state wave function amplitude differs jller et al. recorded the high-resolution infrared spectrum
significantly from zero a, = z. For the levels withs = 1, of HCCN in the region of the, stretching fundamental and

the wave function amplitude d, = s is strictly zero as a  found six separate vibrational bands. However, no vibrational
consequence of the rotational symmetry, Figure 6 and eq 9. Thejgentification could be made. Fermi resonance betweeand

states withls = 0 exceed the barrier to linearity. vs + (V‘l‘,Vé)O'O was suggested in ref 8 as a probable intensity

The vibrationally averaged bending amplitu@s — 6;°0is borrowing mechanism in the region o3.
calculatgd as arccdspsp; - 6i9. For the ground vibrational In the present work, the energy spectra calculated for HCCN
state, 22, (v,v2),%° and 27 of Figure 5, the amplitud&d; — and DCCN are studied in great detail with the help of the

0i0describing the quasilinear mode is calculated to be 11.4, adiabatic expansions of eq 10. This analysis led to the
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Figure 6. Wave function probability amplitudes integrated over the
five internal coordinate®, di, d»,0,,y and three Euler angles for the
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ground vibrational stateg§), vz, 2v3, 3vi, and 42 of HCCN. The

levels shown are calculated fdr= 1 andp = 1. The effective ground-
state potential energy profile alofgis denoted by.+. The horizontal

lines indicate the level energy.

identification of several resonances involving the fundamental

stretchingv, andv; vibrations. For HCCN, we have

and

vy + (vive)® (T~ 0.534 0, 9)+ 0.725 1, 2)

|(vi, 3vp)® 0~ —0.803 0, 5)— 0.447 1, 0)

v, 0.799 0, 9)— 0.439 1, 2)

lvT~ —0.428 0, 5)+ 0.818 1, 0)

11)

12)

The HCCN levels,, v3 + (v;,v2) 20 v3, and (7, 3ve)°0 occur

at 1733.7, 1759.2, 1178.6, and 1185.8énespectively. The

v, state of DCCN displays no resonance mixing. kgrof
DCCN, we obtain

where (25, 2v)%0 andw; lie respectively at 1131.2 and 1150.6

cm L

The adiabatic projections of eqs-113 are given in terms
of the two dominant components, providing at least 81% of the
full-dimensional wave function. For the zero-order vectors, we
employ the notation used by the code, whigrei) stands for

1(2v5, 2v)* 0~ 0.715 0, 7) - 0.567 1, 0)

lvyTr 0.56Q 0, 7)+ 0.72Q 1, 0)

(13)

the adiabatic level witle quanta in the stretchindrj vibration

andi quanta in the five-mode vibration, as described in section

3.1.

J. Phys. Chem. A, Vol. 110, No. 16, 2008527

Adiabatic projection methods are useful for quantitative
studies on separability of internal molecular motions and for
making quantum number assignments to the calculated full-
dimensional rovibrational states. The adiabatic (zero-order) basis
is, however, coordinate dependent. To verify eqs-13, we
studied several other orthogonal (Jacobi type) descriptions and
found that the levels, and v3 occur as zero-order mixtures
also for Jacobi type coordinates. These test calculations led
additionally to the conclusion that internal motion of HCCN is
most separable in the (diatotin diatom) description of Figure
1b.

C. Transitions Involving the Bending vs and v, and
Stretching v, Vibrations. The transitions involving the bending
vs andv, vibrations are summarized in Table 3, whereas Table
4 displays the transitions involving the stretchimgvibration.

The level energies in Tables 3 and 4 are in excellent agreement
with high-resolution spectroscopic data of refs 6, 9, 10, and
12, showing a maximum deviation of3.3 cnt! for the
combination band; + 3v3 — 2v2 calculated at 3464 cr for
HCCN. One may note that in Table 4 we also list the energies
vi + " — vy (n = 1, 2, 3), which are obtained in the
semirigid bender calculations of Hung et'al.

The energy levels of the pure; and purevs bending
vibrations of HCCN are graphically presented in Figure 7. The
states ofv, follow in particular closely the energy pattern of
the two-dimensional (anharmonic) oscillator.

To quantify the degree of quasilinearity of molecular vibra-
tions, Yamada and Winnewisséintroduced the parametes,
given by

vo=1-4[EW) —EJIE@) —E]  (14)

Our results from Tables 2 and 3 give for the quasilinear
bending mode/g of —0.12 for HCCN and oft+0.05 for DCCN.

On the other hand, we obtajn of —1.02 and—0.95 for thev,

of HCCN and DCCN, respectively, as expected for a degenerate
bending mode in well-behaved linear molectdés.

In Figure 7, the states with = 0 are doubly degenerate.
Pronounced-type splitting is, however, found only for the
K = 1 states. Fong and v; of HCCN, thel-type doubling
constantq, is determined to be 40.1 and 27.6 MHz, which
compare well to 40.6 and 27.9 MHz predicted by McCarthy et
al.” For thevg andv; states of DCCN, the calculateg values
of 49.9 and 35.6 MHz agree within 0.8 MHz with the
experimental dafaof 50.6 and 34.8 MHz. For the states+
vs, we obtainedy, of 42 MHz for HCCN and of 54 MHz for
DCCN, which should be compared tp of 44 and 52 MHz
estimated by Morter et &land Sun et al.

As clearly seen in Figure 7, the level separation between
vg? and vgv?* is much smaller than the separation between
vsv? and vy, wherelo = 0 for »; even ando = 1 for z; odd.
For HCCN and DCCN, the levelid, e.g., lies 118 and 108
cm! above 2/§ respectively. An interesting difference be-
tween HCCN and DCCN is found in the ordering of the) 2
and 272 states, Table 3. Whereas the level§ 8f HCCN show
the expected ordering with the Ievei’f,‘Zbeing 9 cnt! below
21/2, the opposite is found for DCCN. In the latter case, the
level 2,3 is 16 cnT! above 274,

The bending HCC frequency obtained for four different
stretching excitations are found in Table 5. The effective
frequencie@u_‘i,ff are calculated aB,,+,, — E,, using the § = 1,

p = 1) values. As seen in Table 5, the excitatiorwgfandvs
lowers vg“ of HCCN approximately by 20 and 13 crhand
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Figure 7. Energy levels of the pure, (left) and purevs (right) bending
associated witl = O are doubly degenerate.

3502 1v,

v
300 [ i

250 [\ 1 gs

200
1 v,

(em™)

150 F %
100 +

S0+

160 170
0 (%)

Figure 8. Effective potential energy profiles and the minimum energy

path along the anglé,. For the purpose of comparison, each of the

curves shown is measured relative to its minimum. The minimum

energy path is denoted by MEP.

140 150 180

vgﬁ of DCCN by 13 and 17 cmt, yielding changes up to 22%.
On the other handy" increases by 12 and 16 ciupon
excitation ofv, in HCCN and DCCN, respectively.

To gain a more general insight into the dynamics of the
quasilineans mode, we have also carried out detailed investiga-
tions of effective (adiabatic) potential energy profiles along the
angle ;. For various excitations of other vibrational modes,
the effective bending profiles were calculated in the spirit of
the DVRHR)+FBR strategy (section 3) by solving five-
dimensional eigenvalue problems for a chosemyrid.

The effectived; profiles obtained for the five-mode ground
state v, vo, andvs are depicted. in Figure 8, whereas the height
of the barrier to Iinearity,\/'g’f‘f, and the location of the
minimum, 07", are presented in Table 5. As seen there, the
height of the barrier to linearity on the five-mode ground-state
profile is 30 cnt? lower than the corresponding MEP value of
287 cntl. Upon excitation ofr; andvg, the barrier to linearity
increases by 75 and 66 cifor HCCN and by 72 and 59 cm
for DCCN relative to the ground-state value. At the same time,
v, excitation introduces lowering af' by 78 cnt? for HCCN
and by 81 cm® for DCCN. According to Table 5, the effective
bending frequencyvgff nicely correlates with the effective
barrier heightVeg, i.€., the higher the barrier to linearity, the
lower the effective bending frequency.

D. Rotational constants.In addition to the transition energies,
Tables 2-4 also give the differeneB, = By — B, between
the ground-state rotational constaBy and the effective

Mladenovicet al.
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vibrations of HCCN, obtained fdr= 4. One may note that the levels

rotational constanB, for the vibrational state. TheB, values
were determined by a least-squares fit of the calculated
rovibrational energies to the following approximate expression

E,=T,+BJUJ+1) (15)
whereT, stands for the term energy.

The ground-state rotational constdy is calculated to be
0.364872 cm! for HCCN and 0.329029 cn for DCCN. They
are 0.0016 and 0.0014 crhsmaller than the experimental
values of 0.366465 and 0.330441 cinderived from the
millimeter spectrd. On the other hand, the theoretical results
of Koput?* which read 0.367468 and 0.331676 Cimoveres-
timate By by 0.0010 and 0.0012 crh. One may also note that
the equilibrium parametersrs( r3, r5,084°) obtained here
(section 2.2) differ by (0.&, 0.0118,, —0.016, —1.7°, 0.7°)
from the best estimate of Koput (2.020 2.51Gy, 2.24%y,
144.9, 175.2) determined at the CCSD(T) level of theory.

The AB, calculated for the fundamental transitions in Table
2 agree remarkably well (within 1.5 MHz) with the experimental
value$-¢211for both HCCN and DCCN. Equally good agree-
ment is also found forg, 2v%, and 37 of DCCN in Tables 2
and 3. In the case of HCCN, the experimental and theoretical
rotational constants fows, 2vZ, and 33 exhibit, however,
different trends. While the experimental rotational consfants
are nearly constant, our results in Table 3 fof and 373 of
HCCN show rather prominent changes AB, with the Is
excitation. Similar behavior is consequently seen for the state
v1 + 2v% in Table 4.

McCarthy et af. also reported threle= 0 states at 435, 525,
and 540 cm? for HCCN and ond = 0 state at 311 cnt for
DCCN, each possessing a rotational constant somewhat larger
than the ground-stat® value, Table 3. Making use of th&B,
computed in the present work, the obserted O states of
HCCN are readily assigned2 (v3,va),% and (5,v2),2° while
thel = 0 state of DCCN is labeledi2. For these four states,
the calculated and experimentsiB, results agree to better than
4 MHz in Table 3.

5. Summary

In this paper, we have presented a detailed study of the
rovibrational energy spectra of HCCN and its isotopomer
DCCN. For the ground electronic state we first developed a
six-dimensional MR-ACPF potential energy surface, which is
subsequently adjusted to give best agreement with experimental
data forv; andvs of HCCN. Quantum mechanical calculations
were carried out for total rotational angular momentdns
0—4 using the DVR¢R)+FBR method. In addition to the
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transition energies, our study also includes the determination
of spectroscopic parameters, such as effective rotational co
stants and-type doubling constants.

The rovibrational energy levels of both HCCN and DCCN
are studied in great detail by means of vibrationally averaged

geometries and adiabatic projection methods. Resonance inter-

action of thev, stretching mode withrs + (v},v2)°0is found in
HCCN, whereas thes stretching mode of DCCN is coupled
with (213, 2v9).90 To gain a more general insight into the
dynamics of the quasilinears bending mode, the effective
(adiabatic) energy profiles along have been calculated for
various five-mode excitations. For both HCCN and DCCN, we
have found a clear increase in the height of the effective barrier
to linearity for the excitedr; and vs, resulting in the lower
effectivevs bending frequency. On the other hamgexcitation
lowers the barrier to linearity and increases the effectiye
frequency.
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